How California Wildfires Can Impact Water Availability

September 27, 2019

New Berkeley Lab study uses supercomputers to analyze hydrological changes in a California watershed following a wildfire.

Berkeley Lab researchers built a numerical model of the Cosumnes River watershed, extending from the Sierra Nevada mountains to the Central Valley, to study post-wildfire changes to the hydrologic cycle. (Credit: Berkeley Lab)

In recent years, wildfires in the western United States have occurred with increasing frequency and scale. Climate change scenarios in California predict prolonged periods of drought with potential for conditions even more amenable to wildfires. The Sierra Nevada Mountains provide up to 70% of the state’s water resources, yet there is little known on how wildfires will impact water resources in the future.

A new study by scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) uses a numerical model of an important watershed in California to shed light on how wildfires can affect large-scale hydrological processes, such as stream flow, groundwater levels, and snowpack and snowmelt. The team found that post-wildfire conditions resulted in greater winter snowpack and subsequently greater summer runoff as well as increased groundwater storage.

The study, “Watershed Dynamics Following Wildfires: Nonlinear Feedbacks and Implications on Hydrologic Responses,” was published recently in the journal, Hydrological Processes.

“We wanted to understand how changes at the land surface can propagate to other locations of the watershed,” said the study’s lead author, Fadji Maina, a postdoctoral fellow in Berkeley Lab’s Earth & Environmental Sciences Area. “Previous studies have looked at individual processes. Our model ties it together and looks at the system holistically.”

Read More

Comments are closed.

Design by Winter Street Design Group | Powered by WordPress | Admin