California-United Water Conference Silicon Valley Tour

SAF-MBR: net energy-producing anaerobic secondary treatment

Chungheon Shin Stanford University

Conventional secondary treatment

Resources in domestic wastewater

Professor Perry McCarty and his big dream

FEATURE

pubs.acs.org/est

Domestic Wastewater Treatment as a Net Energy Producer—Can This be Achieved?

Perry L. McCarty,*,*,*,* Jaeho Bae,* and Jeonghwan Kim*

Anaerobic secondary treatment

- Not requiring energy-intensive aeration
- Producing methane as a renewable energy source
- Having significantly less biosolids production

Anaerobic secondary treatment

Hurdle #1: Slow growth rate of anaerobic microorganism Hurdle #2: Limitation in hydrolysis efficiency Membrane: Anaerobic membrane bioreactor **Possibility** Hurdle#1 Hurdle#2 Time 2010s

 θ_{χ} : retention time of active biomass

 θ_{ns} : retention time of particulate substrate

SAF-MBR

Staged Anaerobic Fluidized Membrane Bioreactor

Three retention times

- **1. HRT**
- 2. SRT of MLSS
- 3. SRT of microorganisms

SAF-MBR development

-scale
SAF-MBR
(24,000 gal/d)

Pilot-scale studies (< 6,000 gal/d)

2009 2013 20202021

The demonstration-scale SAF-MBR system at SVCW

The demonstration-scale SAF-MBR system at SVCW

Current operating condition

- 5 h HRT
- 22 d SRT
- 12 L/m²/h net membrane flux
- No temperature control

The demonstration-scale SAF-MBR system at SVCW

9 ZeeWeed 500D UF membrane modules LEAPmbr diffuser

Performance: COD removal

Performance: secondary sludge production

Performance: secondary sludge production

Performance: electrical energy balance

Performance: electrical energy balance

- Energy production from anaerobic digestion
- Energy consumption for secondary treatment

- Energy production from secondary treatment
- Energy production from anaerobic digestion
- Energy consumption for secondary treatment

- Energy production from secondary treatment
- Energy production from anaerobic digestion
- Energy consumption for secondary treatment

Reverse Osmosis (RO) for potable water recovery 0.5 kWh/m³ (1890 kWh/MG)

- Energy production from secondary treatment
- Energy production from anaerobic digestion
- Energy consumption for secondary treatment

Reverse Osmosis (RO) for potable water recovery

Energy positive, Less footprint

Big punchlines

- Enables high-quality effluent
- First energy-positive secondary treatment system we know of
- 90% reduction of secondary solids
- Smaller footprint
- Enables energy-efficient water reuse

California-United Water Conference Silicon Valley Tour

Thank you

