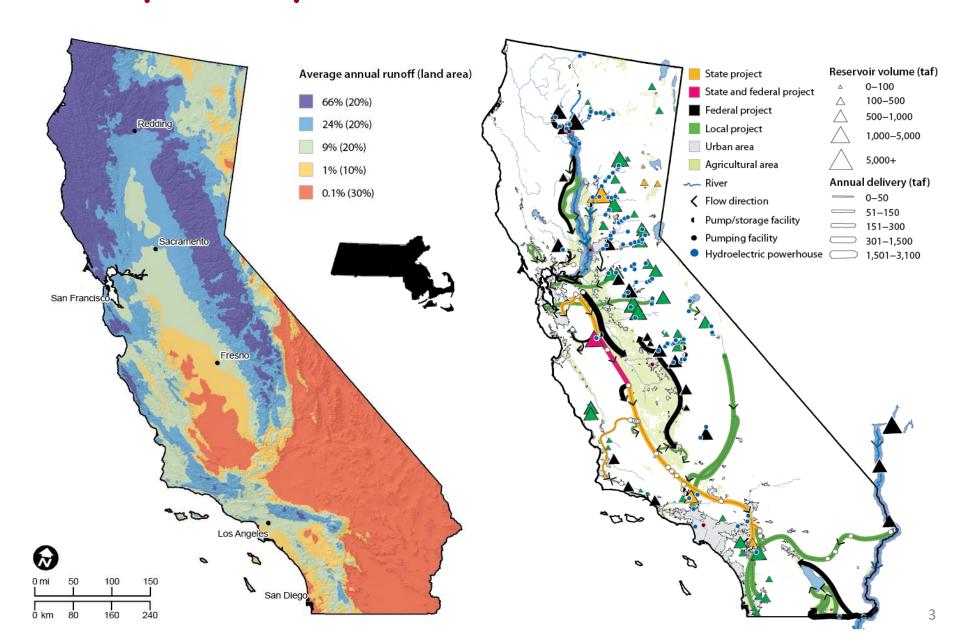
Jay Lund, Ph.D

Board Member & Past Chair

Delta Stewardship Council Independent Science Board

Sacramento-San Joaquin Delta and its Tributaries

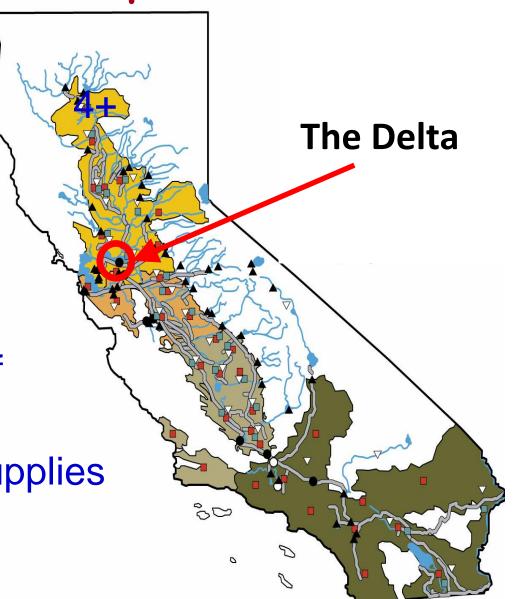
Jay R. Lund


Director, Center for Watershed Sciences
Professor of Civil and Environmental Engineering
University of California, Davis

watershed.ucdavis.edu/shed/lund/ CaliforniaWaterBlog.com

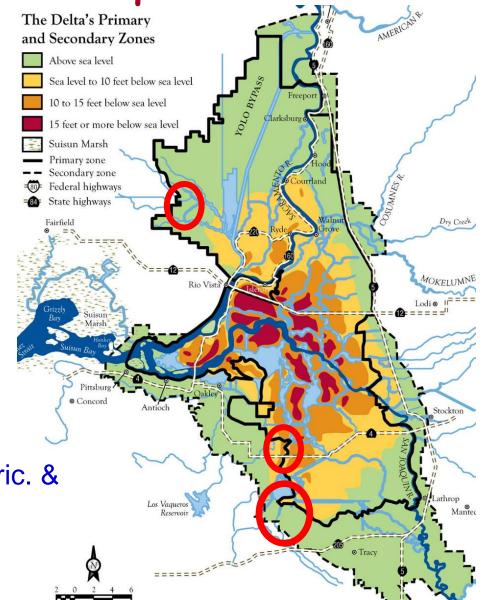
Complexity of Water in California

Sacramento-San Joaquin Delta

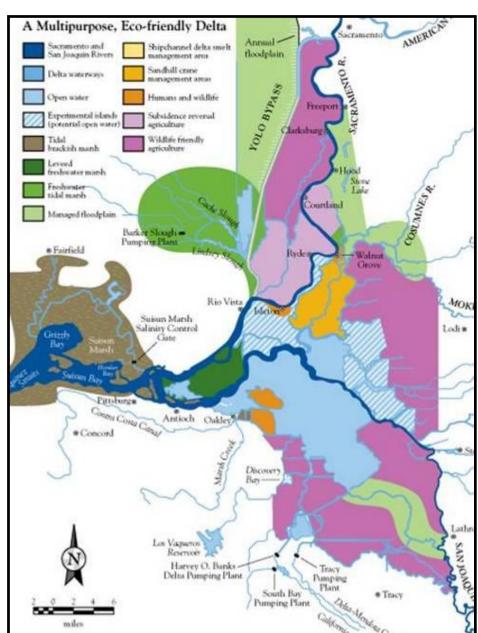

 Sacramento Valley maf taken upstream

Delta farmers – 1+ maf

 Bay Area – 30% directly, another 40% upstream


 S. Central Valley – 4 maf directly; 4 maf upstream

• S. California – 30% of supplies


Problems of California's Sacramento-San Joaquin Delta

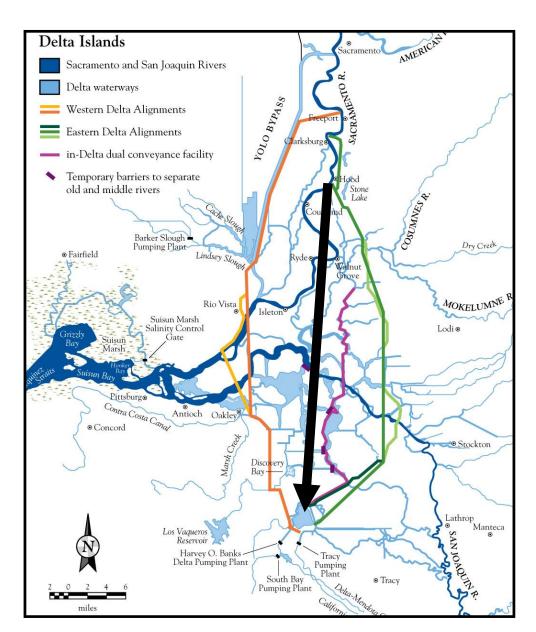
- Physical instability
 - Land subsidence
 - Sea level rise
 - Floods
 - Earthquakes
- Ecosystem instability
 - Habitat alteration
 - Invasive species
- Economic instability
 - High costs to repair islands
 - Worsening water quality for agric. & urban users

Changes for Delta

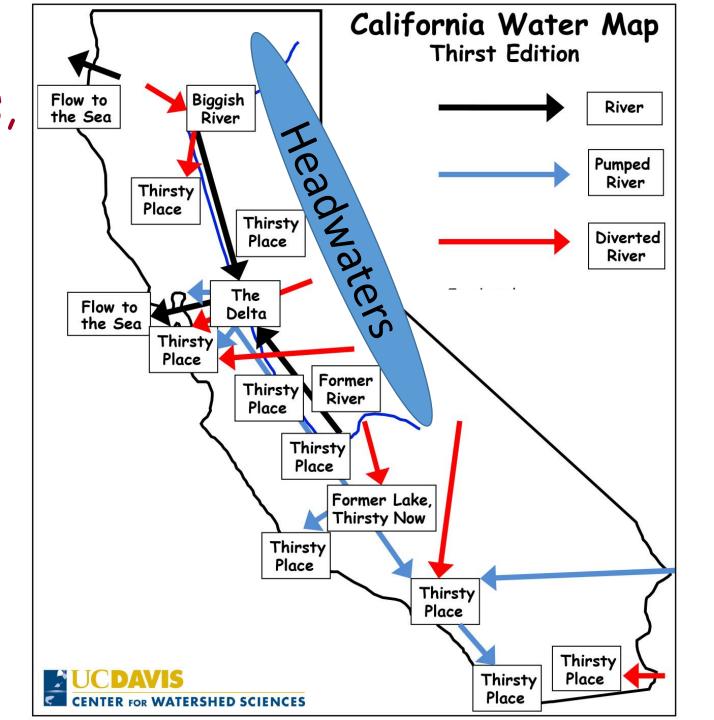
- Climate sea level rise,
 warmer
- SGMA More Delta export demand
- Declining native ecosystems
- Subsided island failures
- Others ...

Policy Decisions for Sacramento-San Joaquin Delta

- Levees
 - "Should I stay or should I go?"
 - Who pays?
- Ecosystem management
 - Manage for what?
 - Where and how?
 - With what resources?
- Water supply
 - Over, under, around, or through?
 - Who loses how much?



Long-term Water Supply Strategies


- 1. Through Delta
- 2. Around Delta
- 3. Dual conveyance
- 4. End Delta exports

How & how much around?

- Peripheral canals
- Under Delta
- Two tunnels
- One tunnel

Water connects us, for better and for worse

Tributary linkages to Delta

- Water supply quantity
 - Seasonal shift, lost snow
 - Greater extremes
 - Likely less on average
- Water supply quality
 - Probably similar
- Floodwater
 - Greater extremes from more extreme storms and less snowpack

Changes coming to Tributaries

- More people upstream
- Climate change
 - Warmer
 - Greater extremes
 - Probably some loss of average flow
- Environmental flows
- Changes to forests
 - Thinner? Less ET? More fires?
- Changes in hydropower, recreation, economy?

Potential for Delta funding for Tributary Activities

- Probably less than people would like
 - Most water flows downstream anyway
 - Forest thinning might reduce watershed ET
 - Increase runoff 1 maf/yr @ \$300/af = \$300m/y
 - Accounting and bill collection difficult
- Water quality benefits likely smaller and harder to assess
- Flood benefits dampened by large reservoirs, perhaps worsened by forest thinning

Support for Mountain Counties

- Water supply water rights, funding
- Forest management
- Land restoration
- Environmental flows
- Legacy water quality problems

Part of larger California water management

 Needn't be entangled with Delta, but might benefit from larger solutions

System Integration

 California's water system is inescapable – provides benefits and controversies

 California's extensive, diverse, variable, water storage and conveyance network encourages broader <u>portfolio</u> management

• Portfolio management is successful, but takes persistent effort to organize.

Water supply system portfolio actions

Water supply		
Water Source availability	Treatment	
Capture of fog, precipitation, streams, groundwater, wastewater	Existing water and wastewater treatment	
Protection of source water quality	New water and wastewater treatment	
Conveyance capacities	Wastewater reuse	
Canals, pipelines, aquifers, tankers (sea or	Ocean Desalination	
land), bottles, etc.	Contaminated aquifers	
Storage capacities	Operations	
Surface reservoirs, aquifers and recharge,	Reoperation of storage and conveyance	
tanks, snowpack, etc.	Conjunctive use	
Water demands and allocation		
Agricultural water use efficiencies and reductions	Ecosystem demand management	
Urban water use efficiencies and reductions	Recreation water use efficiencies	
Incentives		
Pricing	Subsidies, taxes	
Markets	Education	

Building an Integrated Ecosystem Portfolio

Salmon Life-cycle support Institutional support

- Ocean harvesting
- Return spawners
- Eggs
- Rearing juveniles
- Return to sea

Population only as strong as its weakest stage

Assets and organization to give flexibility

- Local groups
- Local government
- State government
- Federal government
- NGOs
- Professional societies
- Organized science and education
- Funding for each level
- Common framework

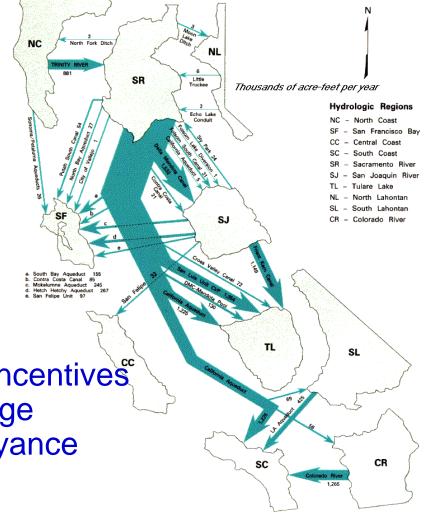
Local and Statewide Portfolio

Local Activities:

- Conservation and use efficiency
- Wastewater reuse
- Desalination (brackish & ocean)
- Groundwater use and recharge
- Surface reservoir operations
- Water markets and exchanges

Statewide Activities:

- Inter-regional water conveyance

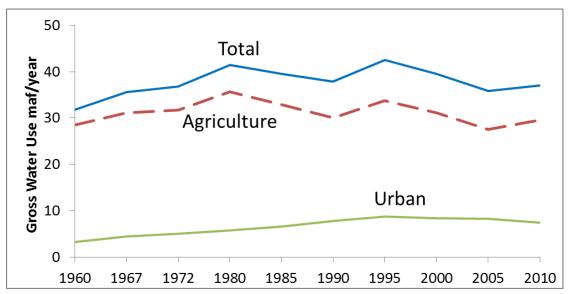

- Surface reservoir operations

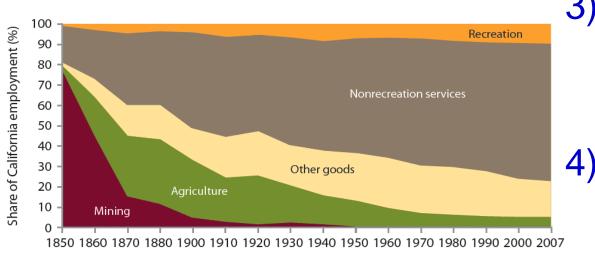
- Plumbing codes & conservation incentives

- Groundwater banking and recharge

- Water market support and conveyance

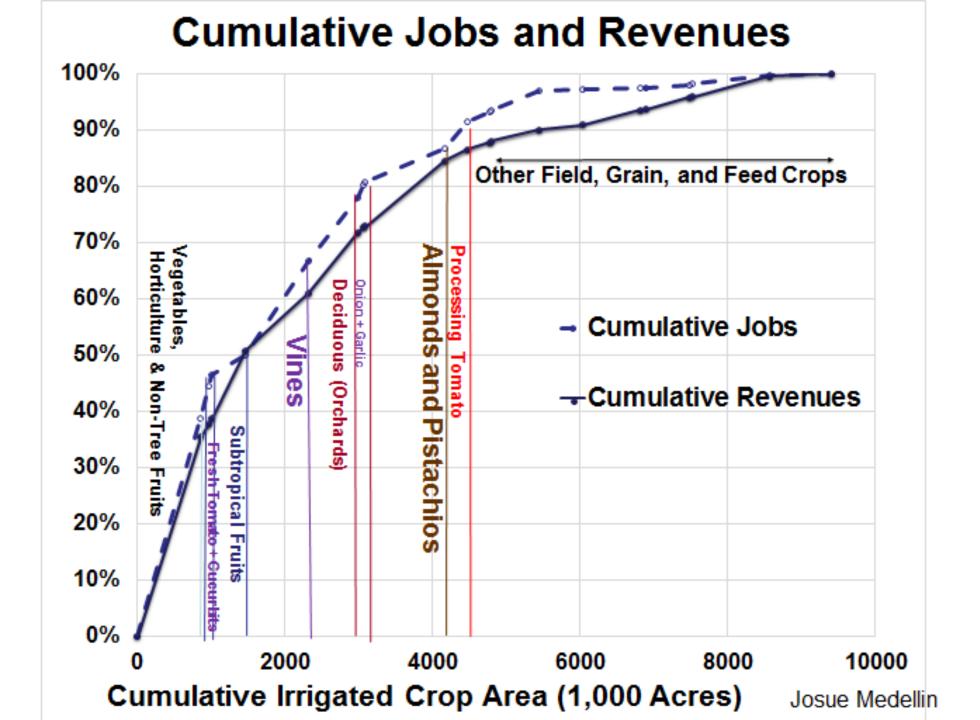
- Wastewater reuse subsidies

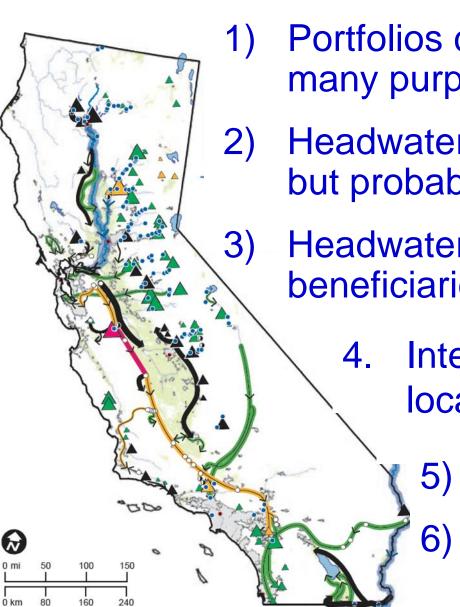



Integrating mix of actions – portfolio planning.

Delta, Tributaries, & Portfolios

- Integrating complex systems is hard, but has benefits
- Few interests get all that they want
- Most must employ portfolio of local, regional, statewide actions
- Common analysis and data helps
 - Water accounting
 - Models and databases
 - Access, quality control, transparency


Reasons for Hope



- 1) Human water use peaked?
- Economy depends less on water abundance
 - Water markets can shift use and civilize change
 - We agree we have a problem

Source: Hanak et al. 2011

Conclusions

 Portfolios core of water success for many purposes

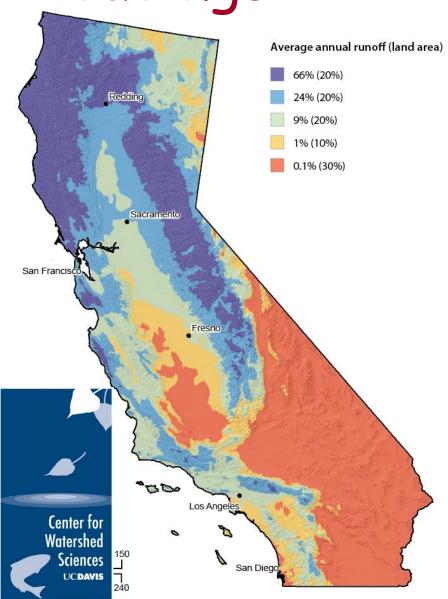
 Headwater management is important, but probably less than most would like

Headwaters have many bigger beneficiaries than the Delta

4. Integration is will include broader local environmental benefits

5) Better water accounting

Change will occur, and must be prepared


Resistance is Futile

- 1) Flooding in parts of the Delta
- 2) Reduced Delta diversions
- 3) Less irrigated land in the southern Central Valley
- 4) Less urban water use, more reuse & storm capture
- 5) Some native species unsustainable in the wild
- 6) Funding solutions mostly local and regional
- 7) State's leverage is mostly regulatory, not funding
- 8) Nitrate groundwater contamination is inevitable
- 9) Groundwater will be managed more tightly
- 10) The Salton Sink will be largely restored

How we manage many changes together is key.

Further Readings

Hanak et al. (2011) *Managing California's Water*, PPIC.org

Hanak et al. (2010) Myths of California Water, PPIC.org

Lund et al. (2010) Comparing
Futures for the Sacramento San
Joaquin Delta, UC Press

PPIC, Improving the Health of California's Headwater Forests, September 2017

PPIC, Stress Relief: Prescriptions for a Healthier Delta Ecosystem, April 2013.

Mavensnotebook.com

CaliforniaWaterBlog.com

Flood management-portfolio of actions

Preparatory actions		
	Vulnerability reduction	
Protection	(reduced damage and casualty potential)	
Levees	Relocation of vulnerable human activities	
Flood walls and doors	Floodplain zoning and building codes	
Closed conduits	Floodproofing-raising structures, sacrificial first floor, flood doors	
Channel improvements and flood corridors	Flood warning and evacuation systems	
Reservoirs	Flood insurance and reinsurance	
Bypasses	Flood risk disclosure	
Sacrificial flooding	Public and policymaker education	
Flood easements (bypasses, designated flood areas)	Flood preparation and training exercises	
Local detention basins, drainage, and pumps	Floodplain mapping, gaging, data collection	
Regular inspections, assessments, and maintenance	Community engagement and multi-hazard planning	
Response actions		
Levee and flood wall monitoring	Warnings, evacuation calls, and emergency	
Flood fighting-sandbagging, sheet pile installation, wave wash	mobilization	
protection, splash cap installation, ring levee construction, relief	High water staking	
cut, pumping, and breach closure		
Flood door closure and gate operation		
Reservoir operation-including coordinated operations, rule curve		
operations and encroachment, flash board installation, surcharging		
Recovery actions		
Reconstruction and repair of flood infrastructure	Flood damage assessment–flood infrastructure surveys, system	
	performance, damage, response costs	

Flood insurance and reinsurance

Relocation/reconstruction to reduce future vulnerability

Reconstruction and repair

Water Quality Management Portfolio

Multiple-barriers Infrastructure	Institutional Accountability
Banned chemicals, activities	Local water utility, elected
	boards
Source protection	Public health agencies
Rivers, reservoirs	State regulators
Aquifers	Federal regulators
Treatment	Professional societies
Distribution system	Universities
Public health system	NGOs