

URS MCWRA Meeting, October 15, 2014

Jonathan Stead¹, Craig Freeman², Steve Leach¹, Susan Hou²

¹URS Corporation, ²San Francisco Public Utilities Commission

Agenda

- > Introduction
- Setting
- Fish Passage Studies
 - Calaveras Dam
 - Natural Barriers
 - Alameda Creek
 Diversion Dam
- Project Permits
- Conclusions

Introduction

Evaluation of need for fish passage can be triggered by project CDFW Stream Alteration Agreement (F&G Code) and Federal ESA consultation

Much water infrastructure developed prior to implementation of environmental laws

Introduction

- Several interrelated steelhead passage studies
- Studies would support Calaveras Dam permitting and public review
- Ongoing, watershed-wide restoration effort would

benefit from information from feasibility analyses

Calaveras Dam

- 220-foot-tall earthen dam
- Alameda and Calaveras Creeks, and Arroyo Hondo
- Arroyo Hondo Basin is 50,000 acres

Old Calaveras Dam

Central California Coast Steelhead DPS

- Alameda CreekWatershed is 10% of DPS
- Steelhead anadromous life history
- Watershed-wide efforts to restore run of steelhead underway

Habitat Upstream of Calaveras Dam

Watershed

Alameda Creek

Fish Passage Studies

- Feasibility of Fish Passage at Calaveras Dam
- Feasibility of Fish Passage at Alameda Creek Diversion Dam
- Assessment of Fish Upstream Migration at Natural Barriers in the Upper Alameda Creek Sub-Watershed
- Assessment of Fish Migration at Riffles in the Sunol Valley Quarry Reach of Alameda Creek

Focus Of Analysis

Technological and Biological Feasibility

Tier 1
Potential
Fish Passage
Design Components

Tier 2

Technologically/
Biologically
Feasible
Design Components

Annualized Cost

(Capital and O&M, including Water)

Tier 3

Specific Fish Passage Options

Biological Benefit

(Habitat Availability and Potential for Sustainability)

Findings

Evaluation Factors

Tier 1 Focus

- Biological Feasibility
 - Migratory needs
 - **Avoiding injury**
- Technological Feasibility
 - **Engineering** solutions available

Tier 2 Focus

- **Annualized cost**
 - Capital Cost
 - Water Cost
 - **O&M Cost**

Tier 3 Focus

- Biological benefit
 - Habitat availability
 - Potential for sustainability
 - Typical goals of fish passage

Fish Ladder at Calaveras Dam

Preliminary Findings

- > Fish ladder
 - 290 vertical feet
 - 70 feet of reservoir forebay fluctuation
- No volitional upstream or downstream passage options identified

Trap and haul only feasible option for passage at Calaveras

Natural Barriers Study

- Evaluated in-stream features considered potential barriers
- Methods from Powers and Orsborn (1985)
- Provides context for Calaveras Dam
 - 12-foot waterfall 200 feet downstream
 - 17-foot waterfall 1.8 miles upstream

Arroyo Hondo Landslide – 17-foot Waterfall

Blocks upstream migration to majority of habitat above Calaveras Reservoir

Findings

- Alternative measures for steelhead recovery with greater benefit-to-cost ratio should be investigated
 - Trap and haul would provide access to limited amount of habitat
 - Passage would be non-volitional
 - Cost would be relatively high

Alameda Creek Diversion Dam and Tunnel

- > 31 foot high dam
- 650 cfs capacity diversion
- 1.8 mile tunnel to Calaveras Reservoir

Complete Barrier to Upstream Migration

- Unscreened diversion may take fish from Alameda Creek to Calaveras Reservoir
- Suitable steelhead habitat present upstream
- SFPUC studied feasibility of passage and screens concurrent with Calaveras Dam

Feasibility Cost Estimation

- Capital Investment
 - Design Fees
 - Materials and Labor
 - Construction Management
- Other Annual Costs
 - Operation and Maintenance
 - Annual Equipment/Repair/Replacement
- Lost Water Opportunity
 - Replacement of water not diverted
- Presented as Annualized Cost Over an Assumed 30-Year Project Life

Water Cost due to Reduced Diversion Capacity

Water Cost due to Screen and Ladder Operations

Findings

- Effort to establish steelhead above the diversion dam would have reasonable probability of success
- Fish ladder technologically feasible
- If Little Yosemite limits immigration to a ladder, trap and haul could provide passage

Project Permits

- Passage studies provided essential information needed for completion of permitting by answering key questions
 - Findings helped focus attention on feasible solutions
 - Facilitated approval of key environmental permits

Project Permits

- Included passage at the Diversion Dam and not at Calaveras Dam, & minor passage improvements downstream
- Decision based on:
 - Non-volitional, high cost/benefit of passage at Calaveras
 - Likelihood of greater success at Diversion Dam

Conclusions

- Early initiation of focused and coordinated fish passage studies provided several benefits:
 - Provided rational, technical foundation for decisions
 - Removed from consideration costly recommendations to modify dam replacement project
 - Results incorporated into final CEQA document and permit applications
 - Reduced potential permit delays

Acknowledgements

- > SFPUC
- > HDR
- Resource Agencies
 - CDFW
 - NMFS
 - USFWS

Questions?

Friant Power Authority, Friant Dam Hydroelectric Facility Expansion Investigation, Design, FERC Licensing, and Permitting

El Dorado Irrigation District, Weber Dam Seismic Strengthening Design, Plans/Specs and Construction Management

Nevada City, Deer Creek Environs Wildfire Mitigation Project, Federal Environmental Compliance