Innovative Technologies in Water Management

• How is dam safety an innovative technology?

• How is dam safety relevant in the current drought?
Governor's Water Action Plan

STORAGE is a key component:

“The bottom line is we need to increase our state’s storage capacity, whether surface or groundwater; whether big or small.”

Big: Sites Reservoir and Temperance Flats Reservoir
Small: Ensure full use of existing capacity and dam raises
Small Scale Storage

• Most dams reaching 50-yr design life
• Neglecting regular maintenance can lead to more serious problems...
• ...Which can lead to a mandated restriction in storage
• 56 dams are currently under restrictions due to dam safety issues
• 470,000 AF of lost storage

Data provided by D. Gutierrez, Chief of the DSOD

Camanche Reservoir, EBMUD
Total Storage 417,000 AF
Small Scale Storage Advantages

- Existing facilities with sunk capital costs
- Fewer environmental and permitting obstacles
- Minimal real estate acquisition impacts
- Existing internal knowledge of operations and maintenance
- Opportunity to improve recreational activities
- Requires development AND implementation of comprehensive Dam Safety Program
Comprehensive Dam Safety Program

- Construction history
- Performance history
- Instrumentation
- Reporting procedures
- Instrumentation thresholds
- Inundation mapping
- Energy Action Plans
- Institutional knowledge
- Relationship with regulator

Construction of San Pablo Dam, photo from EBMUD
Regulators and Risk

- Indirect Risk Evaluation
 - Maximum credible earthquake
 - Probable Maximum Flood
 - With some statistical considerations
 - Design/retrofit to specified level
 - Moving towards more formal risk based approaches

- Risk Informed Decision Making (RIDM)
 - Probabilistic seismic hazard analysis (PSHA)
 - Probable Maximum Flood
 - Probability of failure
 - Consequence of failure
 - Risk reduction measures
The Two Components of Risk

#1 – Probability of Failure
Define potential failure modes

#2 – Consequence of Failure
Loss of life
Economic loss
Operations, irrigation, generation
Environmental loss
Loss to infrastructure
Loss of public trust

<table>
<thead>
<tr>
<th></th>
<th>Very High Slip Rate</th>
<th>High Slip Rate</th>
<th>Moderate Slip Rate</th>
<th>Low Slip Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extreme Consequence</td>
<td>84<sup>th</sup></td>
<td>84<sup>th</sup></td>
<td>84<sup>th</sup></td>
<td>50<sup>th</sup> to 84<sup>th</sup></td>
</tr>
<tr>
<td>Total Class Weight</td>
<td>31-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Consequence</td>
<td>84<sup>th</sup></td>
<td>84<sup>th</sup></td>
<td>50<sup>th</sup> to 84<sup>th</sup></td>
<td>50<sup>th</sup> to 84<sup>th</sup></td>
</tr>
<tr>
<td>Total Class Weight</td>
<td>10-30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate Consequence</td>
<td>84<sup>th</sup></td>
<td>50<sup>th</sup> to 84<sup>th</sup></td>
<td>50<sup>th</sup> to 84<sup>th</sup></td>
<td>50<sup>th</sup></td>
</tr>
<tr>
<td>Total Class Weight</td>
<td>7-14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Consequence</td>
<td>50<sup>th</sup></td>
<td>50<sup>th</sup></td>
<td>50<sup>th</sup></td>
<td>50<sup>th</sup></td>
</tr>
<tr>
<td>Total Class Weight</td>
<td>0-6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DSOD Consequence-Hazard Matrix
Risk Analysis - Scalable

- DSOD: “Indirect” evaluation of risk
- FERC: PFMA – qualitative expert elicitation
 - Category I – Highlighted
 - Category II – Considered but not highlighted
 - Category III – More information needed to classify
 - Category IV – Ruled out
- USACE/BOR/NRC – Quantitative risk analysis
 - Calculation of probability and consequence
 - Even these calculations can be scalable
USACE Tolerable Risk

- 1 in 10,000 of 10 fatalities
- 1 in 100,000 of 100 fatalities
- > 1,000 fatalities could only be acceptable if a careful evaluation of tradeoff and costs is performed
Define Potential Failure Modes

PFM 1 – Overtopping and erosion leading to breach

PFM 2 – Earthquake causing liquefaction leading to dam failure

PFM 3 – Plane crashing and destroying dam

Probability of Failure
AFE: 7E-5 (1 in 15,000)

Probability of Failure
AFE: 5E-6 (1 in 200,000)

Probability of Failure
AFE: 1E-6 (1 in 1,000,000)
Not All Failures Are Created Equally

Consequence of Failure: **Low**
- Forecast rain
- Operational controls
- Erosion can be slow failure
- FERC Category I

Consequence of Failure: **Moderate**
- No warning
- Piping, seepage leading to breach may take minutes to hours
- FERC Category II

Consequence of Failure: **High**
- No warning
- No time for evacuation
- FERC Category IV
F-N Plot of Risk
Consistent Risk
Dam A

Ground Motions for Design

$M_{7.5}$ at 5 km, Hayward Fault

PGA = 0.73g (84^{th}% deterministic)

High slip rate fault

Hazard Curve (USGS, 2008)

PGA: 0.73g – 885 yr return period
Dam B

Ground Motions for Design

M6.5 at 10 km, Foothills Fault system

PGA = 0.40g (84th % deterministic)

Low slip rate fault

Hazard Curve (USGS, 2008)

PGA: 0.40g – 32,000 yr return period

885 yr RP: ~0.10g
Consistent Risk??
Risk Reduction

• Reduce probability of failure
 • Retrofit

• Reduce consequences
 • Improved evacuation plan
 • Improved instrumentation
 • Downstream floodwalls/levees
Benefits of Risk Analysis

• Can start simple and grow in complexity
• Allows for consistent regulatory oversight across large portfolios
• Allows for more rational decision making and CIP prioritization
• Helps communication with policy makers and public
• Demonstrates benefit of both reducing the probability of failure (retrofit), and reducing losses (downstream modifications, updated EAP, cooperation with downstream emergency responders)
Innovative Technologies in Water Management

• How is dam safety an innovative technology?
 • FERC has adopted risk based approaches
 • Many states have adopted risk based approaches
 • DSOD is slowly moving towards risk

• Why is dam safety relevant in the current drought?
 • Risk based approach could benefit MCWRA members
 • Reduced seismic and hydrologic demands
 • Level playing field with rest of state
 • Return existing storage capacity
Innovative Technologies in Water Management

• Policy makers need to understand risk
• Policy makers need to encourage regulators to adopt risk
• Technical staff need to communicate the concepts of risk to non-technical policy makers
Thank you.

Contact me with your questions:

Marc Ryan
SAGE Engineers
mryan@SAGEengineers.com
916.677.4790