RECLANATION Managing Water in the West

Sacramento and San Joaquin Basins Study & Climate Adaptation Options

Presentation to MCWRA and ACWA Region 3

March 11, 2014

U.S. Department of the Interior Bureau of Reclamation

v2

WaterSMART – Basin Study Program Overview

Basin Studies Authorized in SECURE Water Act, Public Law 111-11, Section 9503

- Established in 2010 by Secretary Salazar to...
 - Analyze existing and future basin-wide water supplies and demands

 Identify potential climate impacts to supplies and demands
 Identify adaptive strategies

in response to climate impacts

Basin Study Programs

Activities under the Basin Study Program:

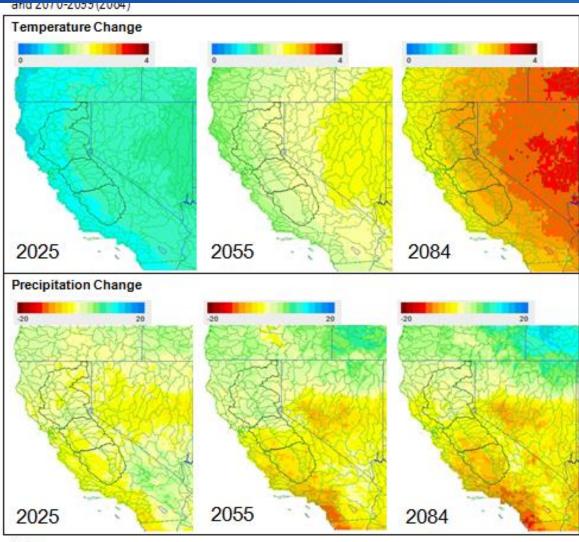
- West-Wide Climate Risk Assessments
- Basin Studies
 - Basin Studies

- WaterSmart follow up Special Studies
- Landscape Conservation Cooperatives

Basin Studies - Mandated Elements

- Each Basin Study "will assess specific risks to water supplies in each major river basin including":
 - > Changes in snowpack
 - Changes in timing and quantity of runoff
 - Changes in groundwater recharge and discharge
- Any increase in:
 - Demand for water due to increasing temperatures
 - Rates of reservoir evaporation

Background The Sacramento and San Joaquin Basins Study



The Sacramento and San Joaquin Basins Study:

- Sacramento River Basin
- San Joaquin River Basin
- Tulare Lake Basin

Climate Projections

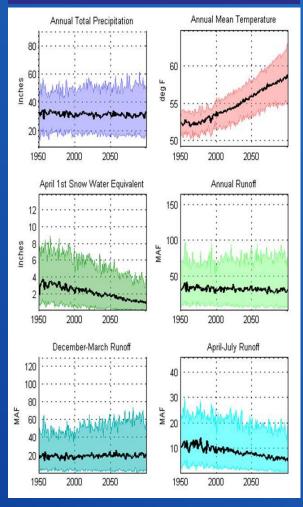
Sacramento and San Joaquin Basins Study: Phase 1- CMIP3 Climate Assessment

RECLAMATION

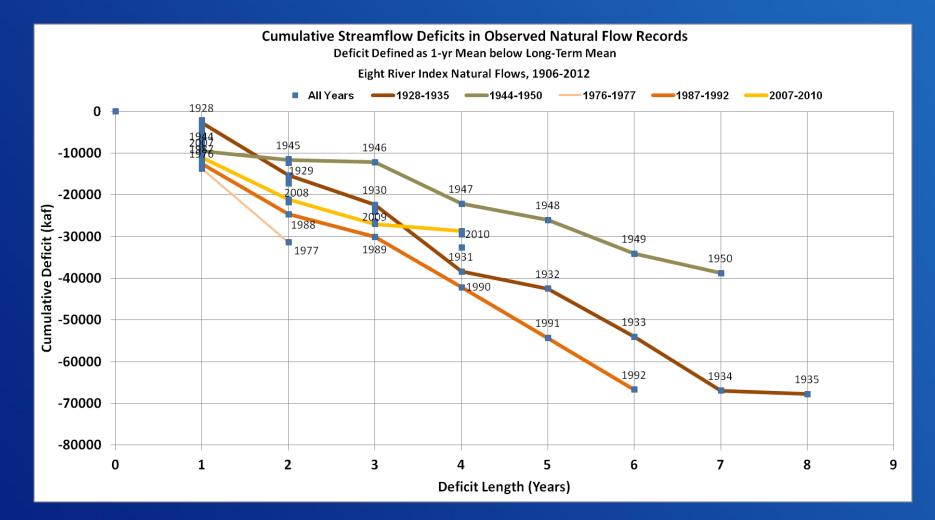
Notes:

Figures show change as compared to the 1971-2000 model simulated historical period. Top panel shows °C. Bottom panel shows percent change.

Climate Projections – Implications


- Changes in Precipitation Patterns (warming= more precip as rain, less snow at elevation)
- Changes in Snowpack (earlier melt and runoff)

> Overall Precipitation:


- 1. Declines in the San Joaquin and Tulare Lake Basins
- 2. Uncertain in the Sacramento Basin

Changes in Storm Track and Characteristics

Sacramento-San Joaquin Basins

Climate Impacts-Significant Droughts

Projected Precipitation Changes

Simulated Changes in Decade-Mean Hydroclimate for the Sacramento River at Freeport

Hydroclimate Metric (Change from 1990)	2020's	2050's	2070's
Mean Annual Precip. (%)	-0.3	0.6	-2.7
Mean April 1st Snow Water Equiv. (%)	-53.4	-75.9	-88.6
Mean Annual Runoff (%)	3.5	2.5	-3.6
Mean December - March Runoff (%)	9.0	13.6	11.0
Mean April - July Runoff (%)	-11.1	-23.0	-36.1

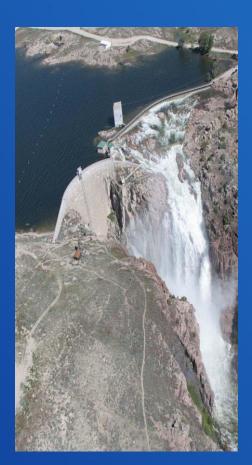
RECLAMATIO

SECURE Water Act, Section 9503, Report to Congress, April, 2011

Basin Study Adaptation Strategies – Mitigating Climate Impacts

- Announcement for Adaptation Strategies and Options
- Starting April 1st through Mid May
- Public, Stakeholders and Partner Agencies
- Options and Strategies Proposed –Analyzed in Basin Study Process

ECLAMATIO


See: http://www.usbr.gov/mp/SSJBasinStudy or contact Arlan Nickel (anickel@usbr.gov)

Adaptation Strategy: High Elevation Storage

What is it? What makes it different? What are its advantages? How is it adaptable to climatic shifts?

What is High Elevation Storage?

- Located in Headwater catchments of mainstem tributaries
- Western slopes of the Sierra Nevada/Southern Cascades
- Upstream of all existing terminal reservoirs

-CLAN

What is High Elevation Storage?

Gerle Creek Reservoir

Bowman Reservoir

Ice House Reservoir

RECLAMATION

Hell Hole Reservoir

What makes it different?

- First area to experience hydrologic shifts
- Largely <u>unaffected</u> by:
- Delta operations/water quality needs
- OCAP BiOp fish passage concerns
- ESA issues anadromous fish
- Empty space reservation flood control

What makes it different?

- Smaller Watersheds, relatively isolated
- Steeper draining valleys
- Inflows seasonal/nonperennial
- Distinct hydrograph shorter refill period
- Excellent hydropower potential
- Snow dominated
- Receive first annual melt pulse

System-Wide Benefits From High Elevation Storage

Water Supply Benefits

- Local water supply reliability
- Augments regional water supplies
- Enhances export and water transfer opportunities

Downstream Flood Control

- Provides opportunity to relax flood space in downstream reservoirs
- Buffers high inflow rates to downstream reservoirs
- Reduce peak flow events on upper tributaries
- Reduce downstream levee failure risks

System Wide Benefits From High Elevation Storage

Hydropower

- Large or small-scale hydropower projects
- Local revenue generation source
- > Clean renewable energy
- Use topographic characteristics – pumped storage opportunities?

Instream Benefits

- > Augment seasonal instream flows
- Improve ability to meet downstream riparian/aquatic minimum flow needs
- Reduce flow ramping extremes from downstream reservoirs

System Wide Benefits From High Elevation Storage

Reservoir Coldwater Pool Assets

- Improve the ability to meet downstream target temps.
- Enhance ability for targeted species recovery
- Enhance late summer/fall coldwater management

Delta Water Quality Enhancements

- Increased managed Delta Inflow potential:
- Salinity Standards (Vernalis/X2)
- Habitat Protection flows

System-Wide Benefits From High Elevation Storage

Enhance CVP/SWP Flexibility

- Increased Retention Upstream of CVP/SWP Facilities:
 - Enhance water yield allocation
 - Increase later-season transfer potential
 - Relax downstream flood reservations
 - Lessen coldwater pool depletion

Recreational Benefits

- Water-related recreational activities
 - Whitewater rafting
 - Fishing
 - Boating
 - Water craft
 - Swimming/Camping
- Related Tourism benefits

Adaptation Strategy: High Elevation Storage

Concluding Comments:

- > New era of water storage investigations
- Capture outflow during times of excess
- > Integrates Water Supply & Flood Control
- Target the exact areas where climatic shifts will alter watershed response
- Multiple public benefits Local Water Supply Reliability, Recreation, Environment, Flood Control
- > Hydro Generation

High Elevation Storage <u>Next Steps:</u>

 As proposed adaptation strategy:

 Request Partner agencies provide locations of Proposed/Potential/Planned High Elevation Reservoirs

Reclamation will Inventory the High Elevation Sites proposed (need watershed location, elevation and approx. AF volume)

Analyzed in the Sacramento and San Joaquin Basins Study - one of many climate adaptation strategies

Contact: Arlan Nickel anickel@usbr.gov or (916) 978-5061
 Basin Study Web Site: http://www.usbr.gov/mp/SSJBasinStudy

ECLAMAT

End of Presentation

Supplemental Information Following